Abstract

In this paper, a least-squares spectral element method for parabolic initial value problem for two space dimension on parallel computers is presented. The theory is also valid for three dimension. This method gives exponential accuracy in both space and time. The method is based on minimization of residuals in terms of the partial differential equation and initial condition, in different Sobolev norms, and a term which measures the jump in the function and its derivatives across inter-element boundaries in appropriate fractional Sobolev norms. Rigorous error estimates for this method are given. Some specific numerical examples are solved to show the efficiency of this method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.