Abstract

The traditional parabolic equation (PE) method is based on the finite difference (FD) scheme. However, the scattering object cannot be well approximated for complex geometries. As a result, a large number of meshes are needed to discretize the complex scattering objects. In this paper, the spectral element method is introduced to better approximate the complex geometry in each transverse plane, while the FD scheme is used along the paraxial direction. This proposed algorithm begins with expanding the reduced scattered fields with the Gauss–Lobatto–Legendre polynomials and testing them by the Galerkin’s method in each transverse plane. Then, the calculation can be taken plane by plane along the paraxial direction. Numerical results demonstrate that the accuracy can be improved by the proposed method with larger meshes when compared with the traditional PE method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.