Abstract

Because it achieves similar performance to that of orthogonal frequency-division multiple access (OFDMA) with much more favorable envelope characteristics and lower peak-to-average power ratio (PAPR), single-carrier frequency-division multiple access (SC-FDMA) was chosen as the uplink transmission technology for Long Term Evolution (LTE) and LTE-Advanced systems. This choice has provoked a growing interest in this transmission technology; therefore, there is extensive literature on its performance in terms of bit error rate (BER) and PAPR. However, research on its spectral efficiency has been scarce until now. This paper aims to help fill this gap with an analytical study of the spectral efficiency in SC-FDMA when adaptive modulation and coding (AMC) and linear frequency-domain equalization are applied. This paper therefore computes the spectral efficiency for zero-forcing (ZF) and minimum-mean-square-error frequency-domain equalization (MMSE-FDE) for different Nakagami-m fading channels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.