Abstract

Equations such as AB = B T A have been studied in the finite dimensional setting in (Linear Algebra Appl 369:279–294, 2003). These equations have implications for the spectrum of B, when A is normal. Our aim is to generalize these results to an infinite dimensional setting. In this case it is natural to use JB*J for some conjugation operator J in place of B T . Our main result is a spectral pairing theorem for a bounded normal operator B which is applied to the study of the equation KB = B*K for K an antiunitary operator. In particular, using conjugation operators, we generalize the notion of Hamiltonian operator and skew-Hamiltonian operator in a natural way, derive some of their properties, and give a characterization of certain operators B for which AB = (JB*J)A and BA = A(JB*J) and also those B with KB = B*K for certain antiunitary operators K.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.