Abstract

In this work we demonstrate the use of two-dimensional detectors to improve the signal-to-noise ratio (SNR) and sensitivity in spectral-domain phase microscopy for subnanometer accuracy measurements. We show that an increase in SNR can be obtained, from 82 dB to 105 dB, using 150 pixel lines of a low-cost CCD camera as compared to a single line, to compute an averaged axial scan. In optimal mechanical conditions, phase stability as small as 92 μrad, corresponding to 6 pm displacement accuracy, could be obtained. We also experimentally demonstrate the benefit of spatial-averaging in terms of the reduction of signal fading due to an axially moving sample. The applications of the improved system are illustrated by imaging live cells in culture.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.