Abstract

Introduction To evaluate the sectorial thickness of single retinal layers and optic nerve using spectral domain optic coherence tomography (SD-OCT) and highlight the parameters with the best diagnostic accuracy in distinguishing between normal and glaucoma subjects at different stages of the disease. Material and Methods For this cross-sectional study, 25 glaucomatous (49 eyes) and 18 age-matched healthy subjects (35 eyes) underwent a complete ophthalmologic examination including visual field testing. Sectorial thickness values of each retinal layer and of the optic nerve were measured using SD-OCT Glaucoma Module Premium Edition (GMPE) software. Each parameter was compared between the groups, and the layers and sectors with the best area under the receiver operating characteristic curve (AUC) were identified. Correlation of visual field index with the most relevant structural parameters was also evaluated. Results and Discussion All subjects were grouped according to stage as follows: Controls (CTRL); Early Stage Group (EG) (Stage 1 + Stage 2); Advanced Stage Group (AG) (Stage 3 + Stage 4 + Stage 5). mGCL TI, mGCL TO, mIPL TO, mean mGCL, cpRNFLt NS, and cpRNFLt TI showed the best results in terms of AUC according classification proposed by Swets (0.9 < AUC < 1.0). These parameters also showed significantly different values among group when CTRL vs EG, CTRL vs AG, and EG vs AG were compared. SD-OCT examination showed significant sectorial thickness differences in most of the macular layers when glaucomatous patients at different stages of the disease were compared each other and to the controls.

Highlights

  • To evaluate the sectorial thickness of single retinal layers and optic nerve using spectral domain optic coherence tomography (SD-OCT) and highlight the parameters with the best diagnostic accuracy in distinguishing between normal and glaucoma subjects at different stages of the disease

  • Primary open-angle glaucoma, a leading cause of blindness in the world, is an optic neuropathy characterized by the death of ganglion cells of the retina, which is associated with the loss of axons that make up the optic nerve. ese ultrastructural alterations gradually progress becoming clinically evident as an increased excavation of the optic disc and the presence of specific visual field (VF) defects [1]

  • Control group was constituted of 35 eyes, while initial and advanced stages glaucoma groups were constituted of 22 eyes and 27 eyes, respectively

Read more

Summary

Introduction

To evaluate the sectorial thickness of single retinal layers and optic nerve using spectral domain optic coherence tomography (SD-OCT) and highlight the parameters with the best diagnostic accuracy in distinguishing between normal and glaucoma subjects at different stages of the disease. Given that a significant structural loss usually precedes detectable function loss [2], technologies and strategies able to quantify glaucomatous changes at an early stage have the potential to impact prognosis and influence quality of life [3] In this context, spectral domain-optical coherence tomography (SD-OCT) provides a tool for macular segmentation and thickness evaluation of individual retinal layers as well as retinal nerve fiber layer thickness (RNFLt) and Bruch’s membrane opening (BMO)-minimum rim width (MRW) assessment. This allows accurate localization and highly sensitive assessment of structural changes.

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call