Abstract

An important for applications, the class of hp discretizations of second-order elliptic equations consists of discretizations based on spectral finite elements. The development of fast domain decomposition algorithms for them was restrained by the absence of fast solvers for the basic components of the method, i.e., for local interior problems on decomposition subdomains and their faces. Recently, the authors have established that such solvers can be designed using special factorized preconditioners. In turn, factorized preconditioners are constructed using an important analogy between the stiffness matrices of spectral and hierarchical basis hp-elements (coordinate functions of the latter are defined as tensor products of integrated Legendre polynomials). Due to this analogy, for matrices of spectral elements, fast solvers can be developed that are similar to those for matrices of hierarchical elements. Based on these facts and previous results on the preconditioning of other components, fast domain decomposition algorithms for spectral discretizations are obtained.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call