Abstract
In this work, we study the numerical approximation of the initial-boundary-value problem of nonlinear pseudo-parabolic equations with Dirichlet boundary conditions. We propose a discretization in space with spectral schemes based on Jacobi polynomials and in time with robust schemes attending to qualitative features such as stiffness and preservation of strong stability for a more correct simulation of non-regular data. Error estimates for the corresponding semidiscrete Galerkin and collocation schemes are derived. The performance of the fully discrete methods is analyzed in a computational study.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.