Abstract
In this paper, we propose a statistical model-based speech enhancement technique using the spectral difference scheme for the speech recognition in virtual reality. In the analyzing step, two principal parameters, the weighting parameter in the decision-directed (DD) method and the long-term smoothing parameter in noise estimation, are uniquely determined as optimal operating points according to the spectral difference under various noise conditions. These optimal operating points, which are specific according to different spectral differences, are estimated based on the composite measure, which is a relevant criterion in terms of speech quality. An efficient mapping function is also presented to provide an index of the metric table associated with the spectral difference so that operating points can be determined according to various noise conditions for an on-line step. In the on-line speech enhancement step, different parameters are chosen on a frame-by-frame basis under the metric table of the spectral difference. The performance of the proposed method is evaluated using objective and subjective speech quality measures in various noise environments. Our experimental results show that the proposed algorithm yields better performances than conventional algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.