Abstract

The spectral dependence of the irreversible non-photochemical fluorescence quenching associated with photoinhibition in vitro has been comparatively investigated in thylakoid membranes, PSII enriched particles and PSII core complexes isolated from spinach. The analysis of the fluorescence emission spectra of dark-adapted and quenched samples as a function of the detection temperature in the 280–80K interval, indicates that Chlorophyll spectral forms having maximal emission in the 700–702nm and 705–710nm ranges gain relative intensity in concomitance with the establishment of irreversible light-induced quenching, acting thereby as spectroscopic markers. The relative enhancement of the 700–702nm and 705–710nm forms emission could be due either to an increase of their stoichiometric abundance or to their intrinsically low fluorescence quantum yields. These two factors, that can also coexist, need to be promoted by light-induced alterations in chromophore-protein as well as chromophore-chromophore interactions. The bands centred at about 701 and 706nm are also observed in the PSII core complex, suggesting their, at least partial, localisation in proximity to the reaction centre, and the occurrence of light-induced conformational changes in the core subunits.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call