Abstract

In contrast with the 3D result, the Beth-Uhlenbeck (BU) formula in 1D contains an extra -1/2 term. The origin of this -1/2 term is explained using a spectral density approach. To be explicit, a delta-function potential is used to show that the correction term arises from a pole of the density of states at zero energy. The spectral density method shows that this term is actually an artifact of the non-normalizability of the scattering states and an infrared cutoff regularization scheme has to be used to get the correct result in 1D. The formal derivation of the BU formula would miss this term since it ignores the effects of the boundary terms. While the result is shown for the delta-function potential, the method and result are valid for more general potentials. Additionally, the 1D Levinson's theorem can be extracted from the spectral density method using the asymptotic form of general potentials. The importance of the result lies in the fact that all these correction terms in 1D have a universal source: a pole at zero energy. Similar calculations using quantum field theoretical approaches (without explicit infrared cutoff regularization schemes) also show the same subtleties with the correction term originating from the zero energy scattering states (appendix A).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.