Abstract
Computation of correlated ionic transport properties from molecular dynamics in the Green-Kubo formalism is expensive, as one cannot rely on the affordable mean square displacement approach. We use spectral decomposition of the short-time ionic displacement covariance to learn a set of diffusion eigenmodes that encode the correlation structure and form a basis for analyzing the ionic trajectories. This allows systematic reduction of the uncertainty and accelerate computations of ionic conductivity in systems with a steady-state correlation structure. We provide mathematical and numerical proofs of the method's robustness and demonstrate it on realistic electrolyte materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.