Abstract

This paper considers an efficient and accurate spectral deferred correction (SDC) method for the initial value problem (IVP) with Caputo–Hadamard derivative. We first apply the basic idea of the SDC method to derive the numerical scheme. Then the iteration matrix which is the key to convergence of the proposed scheme can be obtained for the linear problem. Detailed computation of history term is presented using the spectral collocation method based on mapped Jacobi log orthogonal functions (MJLOFs). Finally, numerical simulations for both linear and nonlinear cases are shown to verify the feasibility and efficiency of the proposed method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.