Abstract

Susceptibility induced signal loss is a limitation in gradient echo functional MRI. The through-plane artifact in axial slices is particularly problematic due to the inferior position of air cavities in the brain. Spectral-spatial radiofrequency pulses have recently been shown to reduce signal loss in a single excitation. The pulses were successfully demonstrated assuming a linear relationship between susceptibility gradient and frequency, however, the exact frequency and spatial distribution of the susceptibility gradient in the brain is unknown. We present a spiral spectroscopic imaging sequence with a time-shifted radiofrequency pulse that can spectrally decompose the through-plane susceptibility gradient for spectral-spatial radiofrequency pulse design. Maps of the through-plane susceptibility gradient as a function of frequency were generated for the human brain at 3T. We found that the linear relationship holds well for the whole brain with an optimal slope of -1.0 μT/m/Hz.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.