Abstract

ABSTRACTThe reassignment method remaps the energy of each point in a time‐frequency spectrum to a new coordinate that is closer to the actual time‐frequency location. Two applications of the reassignment method are developed in this paper. We first describe time‐frequency reassignment as a tool for spectral decomposition. The reassignment method helps to generate more clear frequency slices of layers and therefore, it facilitates the interpretation of thin layers. The second application is to seismic data de‐noising. Through thresholding in the reassigned domain rather than in the Gabor domain, random noise is more easily attenuated since seismic events are more compactly represented with a relatively larger energy than the noise. A reconstruction process that permits the recovery of seismic data from a reassigned time‐frequency spectrum is developed. Two approaches of the reassignment method are used in this paper, one of which is referred to as the trace by trace time reassignment that is mainly used for seismic spectral decomposition and another that is the spatial reassignment that is mainly used for seismic de‐noising. Synthetic examples and two field data examples are used to test the proposed method. For comparison, the Gabor transform method, inversion‐based method and common deconvolution method are also used in the examples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.