Abstract

Carbon sequestration in soils under agricultural use can contribute to climate change mitigation. Spatial–temporal soil organic carbon (SOC) monitoring requires more efficient data acquisition. This study aims to evaluate the potential of spectral on-the-go proximal measurements to serve these needs. The study was conducted as a long-term field experiment. SOC values ranged between 14 and 25 g kg−1 due to different fertilization treatments. Partial least squares regression models were built based on the spectral laboratory and field data collected with two spectrometers (site-specific and on-the-go). Correction of the field data based on the laboratory data was done by testing linear transformation, piecewise direct standardization, and external parameter orthogonalization (EPO). Different preprocessing methods were applied to extract the best possible information content from the sensor signal. The models were then thoroughly interpreted concerning spectral wavelength importance using regression coefficients and variable importance in projection scores. The detailed wavelength importance analysis disclosed the challenge of using soil spectroscopy for SOC monitoring. The use of different spectrometers under varying soil conditions revealed shifts in wavelength importance. Still, our findings on the use of on-the-go spectroscopy for spatial–temporal SOC monitoring are promising.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.