Abstract

We show that one can define a spectral curve for the Cauchy-Riemann operator on a punctured elliptic curve under appropriate boundary conditions. The algebraic curves thus obtained arise, for example, as irreducible components of the spectral curves of minimal tori with planar ends in ℝ3. It turns out that these curves coincide with the spectral curves of certain elliptic KP solitons studied by Krichever.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.