Abstract
This paper presents a new approach to the Hamiltonian structure of isomonodromic deformations of a matrix system of ordinary differential equations (ODEs) on a torus. An isomonodromic analogue of the SU(2) Calogero–Gaudin system is used for a case study of this approach. A clue of this approach is a mapping to a finite number of points on the spectral curve of the isomonodromic Lax equation. The coordinates of these moving points give a new set of Darboux coordinates called the spectral Darboux coordinates. The system of isomonodromic deformations is thereby converted to a nonautonomous Hamiltonian system in the spectral Darboux coordinates. The Hamiltonians turn out to resemble those of a previously known isomonodromic system of a second-order scalar ODE. The two isomonodromic systems are shown to be linked by a simple relation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.