Abstract
The Diestel-Leader graph DL(q,r) is the horocyclic product of the homogeneous trees with respective degrees q+1 and r+1. When q=r, it is the Cayley graph of the lamplighter group (wreath product of the cyclic group of order q with the infinite cyclic group) with respect to a natural generating set. For the "Simple random walk" (SRW) operator on the latter group, Grigorchuk & Zuk and Dicks & Schick have determined the spectrum and the (on-diagonal) spectral measure (Plancherel measure). Here, we show that thanks to the geometric realization, these results can be obtained for all DL-graphs by directly computing an l^2-complete orthonormal system of finitely supported eigenfunctions of the SRW. This allows computation of all matrix elements of the spectral resolution, including the Plancherel measure. As one application, we determine the sharp asymptotic behaviour of the N-step return probabilities of SRW. The spectral computations involve a natural approximating sequence of finite subgraphs, and we study the question whether the cumulative spectral distributions of the latter converge weakly to the Plancherel measure. To this end, we provide a general result regarding Foelner approximations; in the specific case of DL(q,r), the answer is positive only when r=q.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.