Abstract

A direct iterative method of solving for Tandem equilibria by moving magnetic field lines in a manner to satisfy the linearized equilibrium equations converges much more rapidly than standard relaxation techniques, typically in under a fifty iterations. At the highest β’s the number of iterations increase, but is still far less than other methods. In quadrupole tandem mirror equilibrium, octupole and higher distortions of the flux surfaces are important which forces us to abandon finite differences in the angle-like flux variable and resort to a spectral decomposition to solve the equilibrium equations. We display equilibria at the high β expected for MFTF-B and show how Finite Larmor Radius (FLR) effects strongly suppress these azimuthal distortions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.