Abstract

Viscoelastic constrained layer damping is a simple and efficient method for reducing noise, vibration, and fatigue in metal structures. In this work, a spectral collocation method utilizing a layer-wise plate theory was established to inspect the vibration characteristics of a sandwich plate with a viscoelastic core. The displacements of each layer satisfied the Mindlin plate theory. The core's transverse shear stress remained constant. The three layers’ transverse displacements were assumed to be identical. The displacement fields were reduced to nine variables by utilizing the interfaces’ continuity of the displacements. The equations of motion were obtained by utilizing Hamilton’s principle. The viscoelastic core’s material properties were considered as frequency-dependent. To address the complex eigenvalue problem, an iterative algorithm was used. The theoretical results were compared with published theoretical and experimental data for fully clamped rectangular sandwich plates to validate the proposed method. The modified Oberst beam method was applied by fitting the impulse response function to obtain the adhesive’s frequency-dependent storage modulus and loss factor. The natural frequencies and corresponding loss factors of three sandwich plates with different adhesives were measured by conducting impact tests. The numerical results from the present theoretical method agreed well with the measured results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call