Abstract

Modern network analysis often involves multi-layer network data in which the nodes are aligned, and the edges on each layer represent one of the multiple relations among the nodes. Current literature on multi-layer network data is mostly limited to undirected relations. However, direct relations are more common and may introduce extra information. This study focuses on community detection (or clustering) in multi-layer directed networks. To take into account the asymmetry, a novel spectral-co-clustering-based algorithm is developed to detect co-clusters, which capture the sending patterns and receiving patterns of nodes, respectively. Specifically, the eigendecomposition of the debiased sum of Gram matrices over the layer-wise adjacency matrices is computed, followed by the k-means, where the sum of Gram matrices is used to avoid possible cancellation of clusters caused by direct summation. Theoretical analysis of the algorithm under the multi-layer stochastic co-block model is provided, where the common assumption that the cluster number is coupled with the rank of the model is relaxed. After a systematic analysis of the eigenvectors of the population version algorithm, the misclassification rates are derived, which show that multi-layers would bring benefits to the clustering performance. The experimental results of simulated data corroborate the theoretical predictions, and the analysis of a real-world trade network dataset provides interpretable results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.