Abstract

In this paper, we expand upon our previous research on unsupervised learning algorithms to map the spectral parameters of the Martian surface. Previously, we focused on the VIS-NIR range of hyperspectral data from the CRISM imaging spectrometer instrument onboard NASA’s Mars Reconnaissance Orbiter to relate to other correspondent imager data sources. In this study, we generate spectral cluster maps on a selected CRISM datacube in a NIR range of 1050–2550 nm. This range is suitable for identifying most dominate mineralogy formed in ancient wet environment such as phyllosilicates, pyroxene and smectites. In the machine learning community, the UMAP method for dimensionality reduction has recently gained attention because of its computing efficiency and speed. We apply this algorithm in combination with k-Means to data from Jezero Crater. Such studies of Jezero Crater are of priority to support the planning of the current NASA’s Perseversance rover mission. We compare our results with other methodologies based on a suitable metric and can identify an optimal cluster size of six for the selected datacube. Our proposed approach outperforms comparable methods in efficiency and speed. To show the geological relevance of the different clusters, the so-called “summary products” derived from the hyperspectral data are used to correlate each cluster with its mineralogical properties. We show that clustered regions relate to different mineralogical compositions (e.g., carbonates and pyroxene). Finally the generated spectral cluster map shows a qualitatively strong resemblance with a given manually compositional expert map. As a conclusion, the presented method can be implemented for automated region-based analysis to extend our understanding of Martian geological history.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.