Abstract
We present a spectral characterization of two-photon nonclassical interference on a beam splitter (BS) between a weak coherent state source and another source, which emits a phase-randomized weak coherent state, a single-photon state, or a thermal state. Besides spectral characteristics, the average photon number ratio in a given time interval is also considered in our model. The two-photon coincidence probability of two outputs of the BS is numerically calculated with spectral bandwidth ratio and average photon number ratio. Furthermore, the noise of the detection system is taken into account. This also indicates that two-photon interference is able to significantly improve by subtracting two-photon contributions from the input state. All these parameters have a close relation to a real experiment performance and the results may pave new avenues for quantum information technology when two-photon interference between independent sources is necessary.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.