Abstract
During emergency medical situations where the patient has an obstructed airway or necessitates respiratory support, endotracheal intubation (ETI) is the medical technique of placing a tube into the trachea in order to facilitate adequate ventilation of the lungs. In particular, the anatomical, visual and time-sensitive challenges presented in these scenarios, such as in trauma, require a skilled provider in order to successfully place the tube into the trachea. Complications during ETI such as repeated attempts, failed intubation or accidental intubation of the esophagus can lead to severe consequences or ultimately death. Consequently, a need exists for a feedback mechanism to aid providers in performing successful ETI. To investigate potential characteristics to exploit as a feedback mechanism, our study examined the spectral properties of the trachea tissue to determine whether a unique spectral profile exists. In this work, hyperspectral cameras and fiber optic sensors were used to capture and analyze the reflectance profiles of tracheal and esophageal tissues illuminated with UV and white light. Our results show consistent and specific spectral characteristics of the trachea, providing foundational support for using spectral properties to detect features of the trachea.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.