Abstract

Manganese peroxidase (MnP) is a component of the lignin degradation system of the basidiomycetous fungus, Phanerochaete chrysosporium. This novel MnII-dependent extracellular enzyme (Mr = 46,000) contains a single protoporphyrin IX prosthetic group and oxidizes phenolic lignin model compounds as well as a variety of other substrates. To elucidate the heme environment of this enzyme, we have studied its electron paramagnetic resonance and resonance Raman spectroscopic properties. These studies indicate that the native enzyme is predominantly in the high-spin ferric form and has a histidine as fifth ligand. The reduced enzyme has a high-spin, pentacoordinate ferrous heme. Fluoride and cyanide readily bind to the sixth coordination position of the heme iron in the native form, thereby changing MnP into a typical high-spin, hexacoordinate fluoro adduct or a low-spin, hexacoordinate cyano adduct, respectively. EPR spectra of 14NO- and 15NO-adducts of ferrous MnP were compared with those of horseradish peroxidase (HRP); the presence of a proximal histidine ligand was confirmed from the pattern of superhyperfine splittings of the NO signals centered at g approximately equal to 2.005. The appearance of the FeII-His stretch at approximately 240 cm-1 and its apparent lack of deuterium sensitivity suggest that the N delta proton of the proximal histidine of the enzyme is more strongly hydrogen bonded than that of oxygen carrier globins and that this imidazole ligand may be described as having a comparatively strong anionic character. Although resonance Raman frequencies for the spin- and coordination-state marker bands of native MnP, nu 3 (1487), nu 19 (1565), and nu 10 (1622 cm-1), do not fall into frequency regions expected for typical penta- or hexacoordinate high-spin ferric heme complexes, ligation of fluoride produces frequency shifts of these bands very similar to those observed for cytochrome c peroxidase and HRP. Hence, these data strongly suggest that the iron in native MnP is predominantly high-spin pentacoordinate. Analysis of the Raman frequencies indicates that the dx2-y2 orbital of the native enzyme is at higher energy than that of metmyoglobin. These features of the heme in MnP must be favorable for the peroxidase catalytic mechanism involving oxidation of the heme iron to FeIV. Consequently, it is most likely that the heme environment of MnP resembles those of HRP, cytochrome c peroxidase, and lignin peroxidase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.