Abstract

An objective and accurate measurement and characterization of breath sounds was carried out by a fast-Fourier-transform frequency-domain analysis. Normal vesicular breath sounds, picked up over the chest wall of 10 healthy subjects showed a characteristic pattern: the power of the signal decreased exponentially as frequency increased. Since the log amplitude vs. log frequency relationships were linear, they could be characterized by the values of the slope and the maximal frequency. The average slope of the power spectrum curves was found to be (in dB/oct +/- SD) 13.0 +/- 1.4 over the base of the right lung, 12.6 +/- 2.4 over the base of the left lung, 9.8 +/- 1.4 over the interscapular region, and 14.4 +/- 4.3 over the right anterior chest. The maximal frequencies of inspiratory and expiratory breath sounds, picked up over the base of the right lung, were (in Hz +/- SD) 446 +/- 143 and 286 +/- 53 (P less than 0.01), over the base of the left lung 475 +/- 115 and 284 +/- 47 (P less than 0.01), over the interscapular region 434 +/- 130 and 338 +/- 77 (P less than 0.05), and over the right anterior chest 604 +/- 302 and 406 +/- 205 (P less than 0.05). Breath sounds picked up over the trachea were characterized by power spectra typical to a broad spectrum sound with a sharp decrease of power at a cut-off frequency that varied between 850 and 1,600 Hz among the 10 healthy subjects studied.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.