Abstract

This paper investigates the exploitation of the spectral properties of human targets and indoor clutter for sensing through the wall (STTW) applications. The paper focuses on analysis and comparison between human targets and that of common indoor clutter for STTW by comparing modeling results with that of measured data. The characterization of spectral properties for targets and clutter are accomplished through two approaches. The first approach utilizes finite difference time domain (FDTD) techniques to examine the radar cross section (RCS) of humans and indoor clutter objects by using different types of computer models. FDTD allows for the spectral characteristics to be acquired over a wide range of frequencies, polarizations, and aspect angles. The second approach makes use of calibrated RCS calculations using network analyzer measurements to characterize human RCS. We compare and contrast the RCS responses for analysis and use in STTW.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call