Abstract

Biochar-derived dissolved organic carbon (BDOC) and smoke-derived dissolved organic carbon (SDOC) are two different biomass-pyrogenic DOCs. They inevitably enter soil and water, then potentially pose different impacts on the chemistry of these media. This study systemically investigated the emissions and spectral characteristics of BDOC and SDOC as well as their differences from natural DOC. The results showed that the emission of SDOC was 1-3 orders of magnitude greater than that of BDOC after biomass pyrolysis. UV-vis spectra indicated that BDOC had higher aromaticity and molecular weight as well as lower polarity than SDOC. The two-dimensional correlation infrared spectrum (2D-PCIS) matrix indicated that BDOC contained more chemical groups with stronger temperature-dependence than SDOC. Fluorescence EEM-PARAFAC analysis showed that BDOC was dominated by macromolecular humic-like substances, while SDOC was primarily composed of small molecules of aromatic protein/polyphenols-like compounds. The fluorescence indicators including humification index (HIX) (0.08-0.76) and biological index (BIX) (1.18-1.72) of SDOC were significantly different from those of BDOC (HIX: 1.64-12.68, and BIX: 0.17-1.62). The higher BIX and more small molecules of aromatic protein/polyphenols-like compounds indicated SDOC had potentially higher bioavailability and turnover rate in the environment than BDOC. Furthermore, the UV-vis spectral indicator (S275-295) and fluorescence spectral indicators (HIX, and BIX) of BDOC were equivalent to those of natural DOC, whereas these indicators of SDOC were significantly different from those of natural DOC. This study demonstrated that BDOC and SDOC had significantly different components and properties and they might present different environmental behaviors and effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.