Abstract

The Nuclear Spectroscopic Telescope Array (NuSTAR) will be the first space mission to focus in the hard X-ray (5-80 keV) band. The NuSTAR instrument carries two co-aligned grazing incidence hard X-ray telescopes. Each NuSTAR focal plane consists of four 2 mm CdZnTe hybrid pixel detectors, each with an active collecting area of 2 cm x 2 cm. Each hybrid consists of a 32x32 array of 605 &mu;m pixels, read out with the Caltech custom low-noise NuCIT ASIC. In order to characterize the spectral response of each pixel to the degree required to meet the science calibration requirements, we have developed a model based on Geant4 together with the Shockley-Ramo theorem customized to the NuSTAR hybrid design. This model combines a Monte Carlo of the X-ray interactions with subsequent charge transport within the detector. The combination of this model and calibration data taken using radioactive sources of <sup>57</sup>Co, <sup>155</sup>Eu and <sup>241</sup>Am enables us to determine electron and hole mobility-lifetime products for each pixel, and to compare actual to ideal performance expected for defect-free material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.