Abstract

We investigate analytically, numerically, and experimentally the spectral broadening of pulses that undergo the formation of dispersive shocks, addressing in particular pulses in the range of tens of ps generated via electro-optic modulation of a continuous-wave laser. We give an analytical estimate of the maximal spectral extension and show that super-Gaussian waveforms favor the generation of flat-topped spectra. We also show that the weak residual background of the modulator produces undesired spectral ripples. Spectral measurements confirm our estimates and agree well with numerical integration of the nonlinear Schrödinger equation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.