Abstract

The acoustic spectrum emitted by unmanned aerial vehicles (UAVs) and other aircraft can be distorted by propagation through atmospheric turbulence. Since most UAVs are propeller-based, they generate a series of acoustic tones and harmonics. In this paper, spectral broadening of these tones due to atmospheric turbulence is studied. The broadening results from the combined Doppler effect of multiply scattered acoustic signals propagating in a non-stationary turbulent atmosphere. It can be assessed as a Fourier transform of the temporal coherence function of a monochromatic signal propagating in an atmosphere with spatial-temporal fluctuations in temperature and wind velocity. This temporal coherence was recently investigated [V. E. Ostashev, D. K. Wilson, S. N. Vecherin, and S. L. Collier, J. Acoust. Soc. Am. 136 (5), 2414–2431 (2014)] for the model of locally frozen turbulence. Based on these results, spectral broadening is calculated and analyzed for typical meteorological regimes of the atmospheric boundary layer and different flight trajectories of UAVs. Experimental results are presented and compared with theoretical predictions. Spectral broadening might also provide a means for remotely sensing atmospheric turbulence.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.