Abstract
We study Schrödinger operators with Floquet boundary conditions on flat tori obtaining a spectral result giving an asymptotic expansion of all the eigenvalues. The expansion is in λ−δ with δ∈(0,1) for most of the eigenvalues λ (stable eigenvalues), while it is a “directional expansion” for the remaining eigenvalues (unstable eigenvalues). The proof is based on a structure theorem which is a variant of the one proved in [31,32] and on a new iterative quasimode argument.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.