Abstract

We calculate the mean and almost-sure leading order behaviour of the high frequency asymptotics of the eigenvalue counting function associated with the natural Dirichlet form on $\alpha$-stable trees, which lead in turn to short-time heat kernel asymptotics for these random structures. In particular, the conclusions we obtain demonstrate that the spectral dimension of an $\alpha$-stable tree is almost-surely equal to $2\alpha/(2\alpha-1)$, matching that of certain related discrete models. We also show that the exponent for the second term in the asymptotic expansion of the eigenvalue counting function is no greater than $1/(2\alpha-1)$. To prove our results, we adapt a self-similar fractal argument previously applied to the continuum random tree, replacing the decomposition of the continuum tree at the branch point of three suitably chosen vertices with a recently developed spinal decomposition for $\alpha$-stable trees

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call