Abstract

In this paper we discuss spectral approximations of the Poisson equation in deformed quadrilateral domains. High order polynomial approximations are used for both the solution and the representation of the geometry. Following an isoparametric approach, the four edges of the computational domain are first parametrized using high order polynomial interpolation. Transfinite interpolation is then used to construct the mapping from the square reference domain to the physical domain. Through a series of numerical examples we show the importance of representing the boundary of the domain in a careful way; the choice of interpolation points along the edges of the physical domain may significantly effect the overall discretization error. One way to ensure good interpolation points along an edge is based on the following criteria: (i) the points should be on the exact curve; (ii) the derivative of the exact curve and the interpolant should coincide at the internal points along the edge. Following this approach, we demonstrate that the discretization error for the Poisson problem may decay exponentially fast even when the boundary has low regularity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.