Abstract

A relatively simple frequency-type testing procedure for unit root potentially contaminated by an additive stationary noise is introduced, which encompasses general settings and allows for linear trends. The proposed test for unit root versus stationarity is based on a finite number of periodograms computed at low Fourier frequencies. It is not sensitive to the selection of tuning parameters defining the range of frequencies so long as they are in the vicinity of zero. The test does not require augmentation, has parameter-free non-standard asymptotic distribution and is correctly sized. The consistency rate under the alternative of stationarity reveals the relation between the power of the test and the long-run variance of the process. The finite sample performance of the test is explored in a Monte Carlo simulation study, and its empirical application suggests rejection of the unit root hypothesis for some of the Nelson–Plosser time series.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.