Abstract
A study of the structure and radiation properties of round turbulent hydrogen/air diffusion flames is described. Measurements were made of mean and fluctuating streamwise velocity, mean temperatures, species concentrations, spectral radiation intensities, and radiant heat fluxes. The measurements were used to evaluate predictions based on the laminar flamelet concept and narrow-band radiation models both ignoring (using mean properties) and considering (using a stochastic method) effects of turbulence/radiation interactions. State relationships found by correlating auxiliary measurements in laminar flames proved to be almost equivalent to conditions for local thermodynamic equilibrium. Structure and radiation predictions were reasonably good for present test conditions. Effects of turbulence/radiation interactions were significant for these flames, causing almost a 100 percent increase in spectral radiation intensities, in comparison to mean property predictions, upstream of the flame tip.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.