Abstract
Abstract We present a spectral and timing study of the NuSTAR and Swift observations of the black hole candidate IGR J17091–3624 in the hard state during its outburst in 2016. Disk reflection is detected in each of the NuSTAR spectra taken in three epochs. Fitting with relativistic reflection models reveals that the accretion disk is truncated during all epochs with , with the data favoring a low disk inclination of ∼30°–40°. The steepening of the continuum spectra between epochs is accompanied by a decrease in the high energy cutoff: the electron temperature drops from ∼64 to ∼26 keV, changing systematically with the source flux. We detect type-C QPOs in the power spectra with frequency varying between 0.131 and 0.327 Hz. In addition, a secondary peak is found in the power spectra centered at about 2.3 times the QPO frequency during all three epochs. The nature of this secondary frequency is uncertain; however, a non-harmonic origin is favored. We investigate the evolution of the timing and spectral properties during the rising phase of the outburst and discuss their physical implications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.