Abstract
Laser-plasma instabilities (LPIs) hinder the interaction of high-energy laser pulses with targets. Simulations show that broadband spectrally incoherent pulses can mitigate these instabilities. Optimizing laser operation and target interaction requires controlling the properties of these optical pulses. We demonstrate closed-loop control of the spectral density and pulse shape of nanosecond spectrally incoherent pulses after optical parametric amplification in the infrared (∼1053 nm) and sum-frequency generation to the ultraviolet (∼351 nm) using spectral and temporal modulation in the fiber front end. The high versatility of the demonstrated approaches can support the generation of high-energy, spectrally incoherent pulses by future laser facilities for improved LPI mitigation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.