Abstract
The binding mechanism of aripiprazole (APZ) with human serum albumin (HSA) in the absence and presence of three cyclodextrins (CyDs) (β-cyclodextrin, hydroxypropyl-β-cyclodextrin, and (2,6-di-O-methyl)-β-cyclodextrin) was studied by fluorescence, ultraviolet–visible absorption, nuclear magnetic resonance, and circular dichroism (CD) spectroscopy. The CD results revealed some degree of recovery of refolding caused by APZ after the addition of CyD. The Stern–Volmer quenching constant and binding constant of the APZ–HSA interaction were smaller in the presence of the three CyDs. The ultraviolet–visible absorption results indicated that APZ formed 1:1 complex with the three CyDs. The 1H NMR spectra of CyD showed chemical shift and resolution loss of proton after the addition of HSA. Molecular modeling studies showed that both APZ and CyD bind to HSA. The process was initiated through inclusion of free APZ molecules by CyD and the increase in steric hindrance of CyD–HSA binding.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.