Abstract

The photoreduction by amines and N-phenylglycine, NPG, of six styrylquinoxalin-2(1 H)-ones derivatives substituted in the styryl moiety, R-SQ, was studied by using flash photolysis. The photoreaction is initiated via a single electron transfer from the electron donor (amines or NPG) to R-SQ excited triplet state, 3R-SQ*, with the formation of a triplet state radical ion pair or a charge transfer exciplex, 3[CRIP/CTE]. These species live longer than the respective 3R-SQ* and have very similar transient spectra. In the presence of NPG, these 3[CRIP/CTE] evolve on μs time scale to the respective hydrogenated radicals, R-SQH•, whose transient spectra and reaction rate constants with NPG are reported. The identity of these hydrogenated radicals was supported by the spectra obtained with the α-H donor triethylamine and previous pulse radiolysis studies in 2-propanol. Our findings allow proposing a radical chain reaction mechanism that explains the observed spectral behavior and rationalizes formation of the main product formed by binding of four PhNHCH2• derived from NPG decarboxylation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call