Abstract

We first develop a spectrally accurate Petrov--Galerkin spectral method for fractional delay differential equations (FDDEs). This scheme is developed based on a new spectral theory for fractional Sturm--Liouville problems (FSLPs), which has been recently presented in [M. Zayernouri and G. E. Karniadakis, J. Comput. Phys., 252 (2013), pp. 495--517]. Specifically, we obtain solutions to FDDEs in terms of new nonpolynomial basis functions, called Jacobi polyfractonomials, which are the eigenfunctions of the FSLP of the first kind (FSLP-I). Correspondingly, we employ another space of test functions as the span of polyfractonomial eigenfunctions of the FSLP of the second kind (FSLP-II). We prove the wellposedness of the problem and carry out the corresponding stability and error analysis of the PG spectral method. In contrast to standard (nondelay) fractional differential equations, the delay character of FDDEs might induce solutions, which are either nonsmooth or piecewise smooth. In order to effectively trea...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.