Abstract

This paper presents a new approach to detect a standard handheld needle in ultrasound-guided interventions. Our proposal is to use natural hand tremor, which causes minute displacement of the needle, to detect the needle in ultrasound B-mode images. Subtle displacements arising from tremor motion have a periodic pattern which is usually imperceptible to the naked eye in the B-mode image. We use these displacement measurements in a spatiotemporal framework to detect linear structures with periodic pattern among a sequence of frames. The needle trajectory is estimated as a linear path in the image having maximum spectral correlation with the time trace of displacement due to tremor. A coarse estimation process is followed by a fine estimation step, where the motion pattern is analyzed along spatiotemporal linear paths with various angles originating from the estimated puncture site, within the trajectory channel. Spectral coherency is derived for each sample path versus the reference path, and the needle trajectory is identified as the mean of the sample paths with the maximum coherence within the tremor frequency range. To evaluate the detection accuracy, we tested the method in vivo on porcine tissue, where the needle was inserted into the biceps femoris muscle. To understand whether tremor itself affects needle position, the maximum angular change due to tremor was calculated: mean, standard deviation (SD) and root-mean-square (RMS) measurement of [Formula: see text] and [Formula: see text]. The accuracy of the needle trajectory was calculated by comparing to an expert manual segmentation, averaged over the captured data and presented in mean, SD and RMS error of [Formula: see text] and [Formula: see text], respectively. Results demonstrate that natural tremor motion creates minute coherent motion along the needle, which could be used to localize the needle trajectory within the acceptable accuracy. This method is suitable for standard needles used clinically.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.