Abstract

A novel approach towards the spectral analysis of stationary random bivariate signals is proposed. Using the Quaternion Fourier Transform, we introduce a quaternion-valued spectral representation of random bivariate signals seen as complex-valued sequences. This makes possible the definition of a scalar quaternion-valued spectral density for bivariate signals. This spectral density can be meaningfully interpreted in terms of frequency-dependent polarization attributes. A natural decomposition of any random bivariate signal in terms of unpolarized and polarized components is introduced. Nonparametric spectral density estimation is investigated, and we introduce the polarization periodogram of a random bivariate signal. Numerical experiments support our theoretical analysis, illustrating the relevance of the approach on synthetic data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call