Abstract

AbstractHydraulic connections between a river and an adjacent aquifer are controlled by the river resistance and aquifer diffusivity. In this paper, we derive a spectral solution linking the power spectrum of river stage fluctuations to that of the hydraulic head of a confined aquifer by means of a physical scaling factor. The physical scaling factor represents an algebraic expression of the river resistance and aquifer diffusivity and is included in an exact spectral solution derived herein. Statistical measures of the aquifer diffusivity and river resistance are provided by fitting the solution versus observed groundwater hydraulic head obtained at several distances and/or frequencies. At a study site in the middle reach of the Yangtze River and downstream of the Three Gorges Dam in China, we find systematic damping of the hydraulic head variations with distance from the river, which follows a fractal pattern driven by the river stage. In general, the estimated parameters are consistent with results reported in the literature, which supports the validity of the proposed spectral approach, although the paper discusses advantages and limitations due to application conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call