Abstract

We consider the time-independent Hamiltonian simulation using the first order Lie–Trotter–Suzuki product formula under the assumption that the initial state is supported on a low-dimension subspace. By comparing the spectral decomposition of the original Hamiltonian and the effective Hamiltonian, we obtain better upper bounds for various conditions. Especially, we show that the Trotter step size needed to estimate an energy eigenvalue within precision ϵ using quantum phase estimation can be improved in scaling from ϵ to ϵ1/2 for a large class of systems. Our results also depend on the gap condition of the simulated Hamiltonian.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call