Abstract
We investigate the well-posedness of initial-value problems for abstract integrodifferential equations with unbounded operator coefficients in a Hilbert space and provide the spectral analysis of operator-functions describing symbols of such equations. These equations are an abstract form of linear partial integrodifferential equations arising in the viscoelasticity theory and other important applications. We establish the localization and the spectrum structure of operator-functions describing symbols of these equations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.