Abstract

AbstractHigher even order linear differential operators with unbounded coefficients are studied. For these operators the eigenvalues of the characteristic polynomials fall into distinct classes or clusters. Consequently the spectral properties, deficiency indices and spectra, of the underlying differential operators are superpositions of the contributions from the individual clusters. These results are based on a quantitative improvement of Levinson's Theorem. Our methods will also be applicable to other classes of linear differential operators.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.