Abstract
We consider the boundary value problem for the deflection of a finite beam on an elastic foundation subject to vertical loading. We construct a one-to-one correspondence $\Gamma$ from the set of equivalent well-posed two-point boundary conditions to $\mathrm{gl}(4,\mathbb{C})$. Using $\Gamma$, we derive eigenconditions for the integral operator $\mathcal{K}_\mathbf{M}$ for each well-posed two-point boundary condition represented by $\mathbf{M} \in \mathrm{gl}(4,8,\mathbb{C})$. Special features of our eigenconditions include; (1) they isolate the effect of the boundary condition $\mathbf{M}$ on $\mathrm{Spec}\,\mathcal{K}_\mathbf{M}$, (2) they connect $\mathrm{Spec}\,\mathcal{K}_\mathbf{M}$ to $\mathrm{Spec}\,\mathcal{K}_{l,\alpha,k}$ whose structure has been well understood. Using our eigenconditions, we show that, for each nonzero real $\lambda \not \in \mathrm{Spec}\,\mathcal{K}_{l,\alpha,k}$, there exists a real well-posed boundary condition $\mathbf{M}$ such that $\lambda \in \mathrm{Spec}\,\mathcal{K}_\mathbf{M}$. This in particular shows that the integral operators $\mathcal{K}_\mathbf{M}$ arising from well-posed boundary conditions, may not be positive nor contractive in general, as opposed to $\mathcal{K}_{l,\alpha,k}$.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.