Abstract

In this paper we are concerned with the spectral analysis for some classes of finite rank perturbations of diagonal operators in the form, A = D + F, where D is a diagonal operator and F = u1 ⊗ v1 + u2 ⊗ v2 + … + um ⊗ vm is an operator of finite rank in the non-archimedean Hilbert space \(\mathbb{E}_\omega \). Using the theory of Fredholm operators in the non-archimedean setting and the concept of essential spectrum for linear operators, we compute the spectrum of A. A few examples are given at the end of the paper to illustrate our main results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.